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Determination of crystallite size (D) of NPs 

XRD can provide detailed information about lattice parameters of phases, unit cell dimensions 

(a, b and c), crystallinity and particle size of materials. The 3D structure of crystalline minerals is 

defined by regular, repeating planes of atoms to form a crystal lattice. Material properties are 

highly dependent on their structure.  

 XRD consists of an X-ray source and detector to read the reflected beam when X-ray beam 

interacts with these planes of atoms in the sample. Part of the beam is transmitted, absorbed by 

the sample scattered, refracted and diffracted. Diffraction of an X-ray beam by a crystalline solid 

is analogous to diffraction of light. X-rays are diffracted by each mineral phase differently, 

depending on the crystal lattice and how these atoms or ions are arranged. When an X-ray beam 

hits a sample and is diffracted, one can measure the distances between the planes of the atoms 

that constitute the sample by applying Bragg's Law (d is the distance between adjacent planes of 

atoms (the d-spacing), and θ is the angle of incidence of the X-ray beam.  

  

Figure 1: A) schematic of XRD. 

 

Determination of crystal size using the Scherrer Equation 

The Scherrer equation can always be used to estimate the size of the crystallite (D) based on the 

width of the diffraction peak at half intensity, full-width at half-maximum FWHM (2θ): 

𝐷 =   𝐾λ 
𝛽1/2𝑐𝑜𝑠𝜃ℎ𝑘𝑙

⁄     − − − (1) 

D        = the volume weighted crystallite size (nm), 
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K        = the shape factor (K= 0.94), 

λ         = the radiation wavelength (1.54060 Å for Cu-Kα), 

β = instrumental-corrected integral breadth of the reflection (in radius) = the   broadening (band 

width) of the hkl diffraction peak at half-height (θ) in radians, and 

θhkl       = the Bragg diffraction peak angle  

Generally, crystallite size (D) is a measurement of the size coherence diffraction domain and it 

acts as poly-crystalline aggregates. Crystallite size is not the same as particle size; often, it is 

smaller.   

There are two factors causing deviation from perfect crystallinity and effectiveness of the Bragg 

peak; crystallite size (D) and lattice strain (ε) leading to: (i) increased peak width (broadening) 

, (ii) shift in the position of Bragg angle, (iii) effect of intensity peak. Analysis of XRD peak profiles 

indicated that width at half-maximum (FWHM) is sensitive to the variation in nanostructure and 

stress–strain accumulation in the material. The main properties extracted from the width of peak 

analysis are lattice strain (ε) (is a measure of distribution of lattice constants arising from crystal 

imperfections) and crystallite size (D). The Scherrer method is known to calculate crystallite size. 

 

This equation has not taken account peak broadening reducing from other factors such as 

instrumental effect and inhomogeneous strain.  

𝛽(ℎ𝑘𝑙) =  [(𝛽ℎ𝑘𝑙)
2 

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
−    (𝛽ℎ𝑘𝑙)

2 
𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡

]1/2     − − − (2) 

X-ray diffraction peak broadening reveals the β, D, ε,  Elastic modulus (Ehkl) and tensile stress in 

the materials. 
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Figure 2: A) Peak profiles indicated to full-width at half-maximum (FWHM) 

intensity and B) Effect of lattice strain on the d-spacing in crystal structure. 

 

Determination of crystallite size (D) and lattice strain (ε) using the Williamson-Hall 

approach 

The Williamson-Hall approach (W-H) equation is a simple approach both crystallite size (D) and 

lattice strain (ε) induced broadening are not complex due to considering the peak width as a 

function of 2θ. The Williamson-Hall approach (W-H) is given by:  

 

𝛽(ℎ𝑘𝑙) cos 𝜃ℎ𝑘𝑙 =    𝑘𝜆
𝐷⁄   +   4ε sin 𝜃ℎ𝑘𝑙    − − − (3) 

𝑦 = 𝑧 + 𝑚𝑋             (Linear equation with intercept) 

From plot β(hkl) cosθhkl along Y-axis and sin θhkl along X-axis, lattice strain (ε) can be calculated 

from the slope (m) which is equal 4ε. Also, crystallite size (D) can be calculated from the intercept 
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(Z) of the linear fit made to the plot which is equal to  Κ λ/D. Assuming the lattice strain (ε) is 

uniform in the materials, this indicates the isotropic nature of the crystal.  

Elastic modulus (Ehkl) is the constant of proportionality being the modulus of elasticity and it is a 

Young’s modulus in the perpendicular direction to the set of crystal lattice plane (hkl) hexagonal 

crystal phase. Also, it is related to their elastic compliances Sij and for a hexagonal HAp crystal 

phase Elastic modulus (Ehkl) is according to equation (4). 

 

Hook’s Law can be used to determine the lattice deformation stress (σ) by Eq.  

𝜎 = 𝐸ℎ𝑘𝑙 +  𝜀     − − − − − − − − (5)              

When modified Eq. 5 is given by: 

𝛽 𝑐𝑜𝑠𝜃 =  
𝐾𝜆

𝐷
 + 4 

𝜎 𝑠𝑖𝑛𝜃

𝐸ℎ𝑙𝑘
  − − − − − −   (6)    

 

Lattice deformation stress (σ) can be extracted from the slope and crystallite size (D) from the 

intercept of linear fit made to the plot. 

Powder samples were supported on a silica wafer and placed on the diffractometer holder which 

loaded into the instrument. X-Ray diffractometry used was a Bruker Advance D8 including a Cu 

anode Kα (λ=1.54060 Å) over the 2θ range of 10-70o. The XRD peak positions were calibrated with 

Al2O3. 

 


